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Machinery noise and vibration is an important issue
in many apl_lications, including spacecraft, aircraft, and

"naval vessels. A classic approach to ameliorating the
effect of such disturbances is isolation at a vibration
transmission bottle neck; the machinery mounts. Passive
approaches are widespread, and introduce no risk of
instability. Active techniques promise increased isolation
performance, but introduce the risk of unstable interaction
with system dynamics, particularlyresonant vibrationsof
the machine orofthe supportingstructure.

This paper focusesupon a specializationof a_tive
isolation;isolationof nearly time-periodicdistu'rbances.
In this situation one can achieve significantisolation
performance with minimal risk of instability. The paper
demonstrates, with aid of a simple case study, that the
safely achievable performance is limited by three
important factors: 1) The level of passive damping present
in the unmodeled resonant response of the mechanical
system (supporting structure and machine). The
importance of passive damping is most concisely
quantified by the modal overlap; the ratio of modal
bandwidth to modal spacing. 2) The pole-zero structure of
the transfer function from the actuators to sensors at
frequencies near the disturbance frequency. For rigid
machines, the single most important parameter is machine
mass relative to effective modal mass. 3) The spectral
bandwidth of the offending disturbance. Slowly time-
varying quasi-periodic disturbances are easiest to isolate
by the techniques studied. For the case study, attention is
restricted to a rigid "machine" and single axis motion.
The paper develops modeling analyses, discusses sensor
and actuator choices, discusses control algorithms, and
presents the results of an experimental study.
1 Intmdnctkm

Vibration is a problem in many applications,
including helicopter gearboxes at 1500 Hz [1], submarine
machinery at many harmonics [2], and spacecraft
momentum wheels at many harmonics with important
speed changes [3]. These and other potential apphcations
of active vibration isolation have in common three basic
features that one must consider in the design of an
isolation system: disturbance spectrum, characteristic

structural dynamics, and machinery mounting. The
disturbancespectrum istypicallybroadband with "spikes"
at some characteristicfrequency ,usuallythatofthe shaR,
and harmonics [4,5,6]. A typicalmeasurement of this
spectrum isshown in Fig. 1 [5]. A second featurethese
examples have in common is the structureto which the
machine ismounted. In comparison with the machine, the
structureisflexible,as ithas itsinitialeigen-frequencies
wellbelow thoseofthe machinery itself[4].Below the first
machine-eigen-frequency,the system can be modeled as a
rigidmass attached to a flexiblesubstructure. The final
commonality ofthese examples isin the mounting ofthe

machinery to the structure. Machinery mounts act as a
"bottleneck in the disturbance transmission path. This
makes them attractivelocationstoplacedevicesthatlimit
disturbancetransmission.
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Figure I
TypicalMachinery Spectrum

The idealvibrationisolatingmount would provide
stiffnesstosupportthe machine atfrequenciesbelow some
performance bandwidth so that low frequency loads are
transmitted.At frequenciesabove the bandwidth, itwould
be totallycompliant with the assumption that vibrations
at these higher frequenciesare noise and should not be
transmittedto (or from) the structure. This ideal stiffness
function is shown in Fig. 2. Attempts to develop mounts
whose stiffness functions offer a compromise to that of the
ideal mount are categorized as active or passive.
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Figure 2
Ideal Mount

1.1 Passive Techniques
Traditional passive devices are separated into two

categories: "soft springs" and "tuned" isolators. The use
of soft springs whose stiffness varies weakly with
frequency (visco-elastic) or with relative deflection (non-
linear) is typical. The minimum stiffness of the spring is
dictated by performance requirements and clearance
specifications.

"Tuned" passive isolators contain internal
resonances which produce notches in the stiffness function.
Every notch requires an additional degree of freedom in
the mount which adds complexity, mass and occupies
volume. Furthermore, mounts with internal resonances are
stiffer at other frequencies. In general, passive techniques
are limited by physical constraints and complexity, and
cannot be readily tuned to match a time-varying machinery
spectrum.

1,2 A_tive Techniques
These limitations make active control of the mount

properties an attractive alternative. A feedback system
may be designed to make the mount behave like the tuned
or soft spring passive isolator. Additionally, more
complex feedback systems can be employed with little
mass or volume penalty. However, the introduction of
feedback systems introduces an external energy source
and therefore the possibility of instability.

Active algorithms are categorized as narrow or
broad band. Abroad band implementation can yield a
mount with a stiffness function approximating that of the
ideal mount. This is a particularly difficult task in that a
detailed knowledge of the dynamic characteristics of the
structure (plant) may be required to avoid the risk of
unstable control-structure interaction [7]. Unfortunately,

modelin_errors prevent certain knowledge of the plant.
Narrowoand implementation yields a mount which is
significantly compliant only over a small range in
frequency. Here, only information of the disturbance and of
general characteristics of the plant dynamics are required
[4]. The resulting stiffness function is shown in Fig. 3. The
"notches" in this stiffness function can be controlled to
occur at the machine operating frequency and harmonics,
which may vary in time.
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Active Narrow Band Stiffness Function

This paper focuses upon such narrow band acuve
isolation, predicting analytically the degree of
performance robustly achievable in the presence of
unmodeled plant resonances. The analysis quantifies the
importance of passive damping, modal overlap, and pole-
zero spacing. These quantities can be predicted with
Greater confidence than can details of the structural
aynamics.

2 Theory
In this section the theory behind single-axis active

isolation is developed. First the actuator and sensor are
defined, enabling plant determination. Then
compensation is presented and discussed.

2.1 Actuator
Given that active control has been chosen as a

solution or to augment a passive system, one must decide
where to place the actuator. Two basic possibilities exist:
in series with the load path and in parallel with the load
path (Fig. 4). If the actuator is placed parallel to some
other force carrying member, it must overcome the stiffness
of the force carrier to actuate. However, it does not have to
bear the entire static load of the machine. If the actuator is
placed directly in the load path, it must bear the load of the
machine, but only has to overcome its own stiffness in
actuation. Thus, stiffness and actuation authority are
traded off against each other.

ParallelConfiguration Series Configuration

Figure 4
Paralleland SeriesMount Enhancement

Because acoustic-banddisturbancesare the targetof
thisinvestigation,relativelyhigh bandwidth isan actuator
requirement. This inherentlyeases the requirements on
actuationamplitude because vibrationamplitude typically

1

decreases proportionalto_-_. In the case ofmachinery

noise,amplitudes on the order of fractionalmilli-inches
can be expectedinthe audiblebandwidth. So, the actuator
requirementsboildown tohigh bandwidth, low amplitude.

These factorspoint to the use of piezo-ceramic
material. Often used in applicationsrequinng bandwidths
on the orderofMI-Iz,piezo-electriccrystalsmore than meet
the bandwidth criterion.Displacement in this type of

deviceislimitedby a maximum strain(about10-4e).Eq. 1
characterizesthe electro-mechanicalproperty of a one-
dimensional piezo-electricmaterial. Here, relative

deflection,hx, iswritten in terms ofan appliedexternal
force,f,the displacement per voltage coefficient,d, the
applied voltage,V, and the stiffnessof the material, k.
The piezomass isignored, sinceitissmall compared to
that ofthe machine. Refer also to Fig.5 for a graphical
illustration.

f + dV
Ax-

k (I)
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Figure 5

Piezo-Cerarnic Electro-Mechanical Coupling

The piezo-electricstacks used for this projectare
rated ata load-freedisplacementof0.5milli-inches,which
meets the amplitude requirement. Also,with a stiffness
comparable tothat ofaluminum, placement inserieswith
the load path presents no major problems, although
tensionalloadsmust be avoided.

2.2 Sensor
With the actuatorchosen, the sensor requirements

can be defined. The possibilitiesthat arise are
transmitted force,relativemotion, and absolute motion.
Here, motion is a general category which includes
acceleration,velocity,and displacement measurements.
Relativemotion (mount elongation)iseasy tomeasure but
not usefulforisolation.Accelerationofthe substructureat
the mount locationis a useful measurement, but sensor
noise floor considerations suggest unacceptable
performance limitation.Force transducersinthe load path
were chosen forthisproject.

A look at the direction of isolation offers an

additionalargument tosense transmitted force.Sievers
[4] states that if the control loop acts to drive force
between the machine and structure to zero,vibrationis
isolatedin both directions.This isto say that machine
vibrations are not transmitted to the structure and
structuralvibrationsare not transmittedto the machine.
If,on the other hand, motion isdriven to zero,isolation
takesplaceinone directiononly.

2.3Plant
With the actuator-sensorpairdefined,the plantcan

be considered. Attempts at modeling the plant are
prohibitiveforatleasttwo reasons. First,the structureis
likelyto be physically complex and a multi degree of
freedom finiteelement model would be necessary to

determine the locationsof poles at high frequenciesof
interest. Second, as frequency increases, many
assumptions thatwould be made in such an analysiswould
break down. Thus, the expectederrorwould increasewith

frequency.
However, general characteristics" of the plant are

sufficient for robust narrow band control design. These
general characteristics are derived in section 2.3.1. An
assumption used in the derivation is that the plant model
has alternating poles and zeros. The chosen sensor-
actuator pair are co-located, but not dual; consequently, it
cannot be assumed that the plant transfer function has
alternating poles and zeros. The following discussion
provides a proof showing that even though the sensor-
actuator pair are not dual, the plant exhibits the necessary
pole-zero pattern.

2.3.1 Guaranteed Properties of FIe_ble Structures
There are certain properties of the d_namics of any

linear flexible structure that can be exploited without
specifically modeling its dynamic response. A generic
representation of the driving point compliance _ie.
positiontoforcetransferfunction)ofany structureis:

x(s) i =_

i =1 (2)
where zi and Pi are the complex zeros and poles,
respectively, and H is a real constant.

The compliance transfer function of an undamped
structure is guaranteed to have alternating poles and
zeroes on the imaginary axis of the s-plane [8]; its phase
alternates between 0o and -180 o. The pole-zero pattern of
a damped structure is somewhat more complex. If the
damping is hysteretic (complex modulus) and all materials
in the structure have identical loss factors, then the poles
and zeroes alternate a long a line parallel to the
imaginary axis. If the damping is viscous and
proportionally distributed [9], then the complex roots
alternate in magnitude and the alternating pole-zero
structure is preserved. If the damping is further restricted
to be both proportional and modally uniform, the
alternating poles and zeroes are alignedalong a line in
the Laplace plane. These possibilities are ske_hed in Fig.
6. Interesting bounds on the zero locations with respect to
the pole locations are derived in Ref. [10] for SISO and
MIMO structural dynamic systems.
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Figure6
Pole-ZeroPatternsofCompliance forDifferentDamping

Mechanisms

The remainder ofthispaper exploitsa characteristic
thatallthesepatternsexhibitinthe caseoflightdamping;,
the pole-zeropatternofa lightlydamped structurediffers
from that of the undamped structure only in the real part of
the corresponding roots. A first-order perturbation
argument [11] shows that the imaginary part is
unchanged. Unfortunately, the degree to which each pole
and zero is damped depends upon details of the damping
mechanisms present, and upon their distribution in the
structure, A typical flexible structure will have damping
ratios, between .05 and .005. This corresponds to
structures with roots in the region between the radial lines
at .86 ° and 2.86 ° from the complex axis of the Laplace
plane. This small radial variation in pole-zero placement
leads one to believe that an analysis for a system with
either of the three damping mechanisms listed in Fig. 6
would show similar results.



2.32 Pole.Zero Pattern of Flex'ible Machine Mounted
on Fle_ble Structure

Structural control designers normally work with
sensor-actuator pairs that are dual and essentially
collocated. The advantage of a dual-collocated pair is that
the undamped plant transfer function is assured to have an
alternating pole-zero pattern on the complex axis o_ the

Laplace plane; its phase remains within a 180 ° range.
This is important in structural control since other sensor-
actuator configurations typically result in non-minimum
phase zeroes or pole-zero patterns that dofft alternate
(e.g. two neighboring poles together on the complex axis
with no zero in the interval connecting them); both leading
to more difficult control situations.

The sensor-actuator pair considered for isolation is
a force transducer that senses force of the actuator on the
structure, and a piezo-actuator whose control input is
voltage. The pair are collocated but not dual, therefore,
there is no general result that predicts the phase
characteristics of the plant transfer function. In the
following analysis, it will be shown that even though the
chosen sensor-actuator pair are not dual, they still exhibit
the characteristic alternating pole-zero pattern of a
collocated-dual pair. A force diagram describing the
system is shown in Fig. 7. The equilibrium equations are:

F l = Fp (3)

F2=- Fp (4)

}
machine

F 1

Figure 7
Force Diagram of Machine Mounted on Structure

Eqs. 5 and 6 are generic representations of the
compliance transfer function at the structure-actuator
interface and the machine-actuator interface, respectively.

x 2(S) 2i =1\

i=l_ (6)
where HI and H2 are positive constants.

Eqs. 1, 3 and 5 can be combined to form a general
expression for the plant transfer function between
regulated output and controlled input:

- iL" ! !

' x_ I '.2._., " J

(7)

The variables zi, Pi, 7j, and _j can be replaced by

J_zi, jcopi, jco_i, jcoSi, respectively, when both the structure
and machine are [mdamped. The relative locations of the

oles and zeros can be determined since the numerator and
enominator of Eq. 7 are both real. For the undamped

case, the compliance transfer functions are guaranteed to

have alternating pole-zero patterns, thus, C_zi < COpi <

C_z(i+l) and c_[i < cot_i < co{Ii+l). To determine the root
locations, the denominator is written as a real function of

o_and set equal to zero:

",=r, \ P') )J-=_ ", (8)
The above equation can be rewritten in a more useful form
for graphical solution:

j:l\ k. _,) ) i=_\ (9)
The fight hand side of Eq. 9 is the compliance

transfer function of the undamped structure and is plotted
in Fig. 8. The left hand side of Eq. 9 is the compliance
transfer function for the undamped machine plus an
additional offset factor. This function is plotted in Fig. 9,

using the requirement that the values of co'/j and co_j

alternate with increasing frequency (i.e. CO:zi< co_i <

'_o_(i+1)). The roots of the plant transfer function are at the

_,alues of co where these two plots overlap.
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Figure 8

Right-Hand Side of Eq. 9 Plotted as a function of co
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Figure 9

Left-Hand Side of Eq. 9 Plotted as a function of co



Since the zeros of the plant transfer function occur at

copi and COpi, a graphical proof can easily be sketched that
slows an alternating pole-zero pattern of the plant

v2
transfer function, _-_"

The prececTing analysis predicts an alternating
pole-zero pattern, and bounds the plant phase between 0o
and 180 °. The average gain trend and average phase
depends upon the details of the pole-zero spacing, but are
related by the Bode Gain-Phase relationship. Given that

the phase is positive for all co, and the absence of non-
minimum phase zeros, the magnitude must increase with
an average slope of:

d[20Log(mag)][ 20dB [AvgPhase]d[ Log (co)] - Decade 90 °
Avg. (10)

The average slope is a function of pole-zero spacing and is
bounded between zero and 40 dB/Decade. This is seen in
the measured plant transfer fi.mction (Fig. 10).
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Figure 10
Measured Plant Transfer Function
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2.4 Compensation
Fig. 11isa block diagram ofthe closedloop system.

Here, the plant,G(s),convertsvoltageappliedtothe piezo-

actuator into voltageas output by the forcetransducer
which issummed with the disturbance toproduce force
transmitted,Y(s).The compensator, C(s)isfedthe output
ofthe forcetransducerand providesthe input tothe piezo-
actuator. Note that the input,X(s),to the controlloop is
zero,as thisisthe desiredamount offorcetransmittedto
the structure.

D(s)

G(s) Y(s)

Figure II
ControlBlock Diagram

The relationship between D<s) and Y_s, is:

YCs) = D(s)- l 1
+ G(s)C(s) (1 l)

In order for DCs) to have a negligible influence on Y_s!, the
magnitude of G(s)C(s) must be large compared to one at
frequencies at which the disturbance is significant. The
loop must also be stable.

For a single harmonic disturbance, a compensator

consisting of a second order pole with damping ratio _c,

and natural frequency COcsatisfies these requirements. At

frequencies below COc,the phase of the loop function is the
same as the uncompensated plant, bounded by ÷ 180 and
zero degrees. That the phase is so close to 180 degrees is
not a pressing problem because phase lead errors are

rarely encountered. At frequencies above O-_c,the phase of
the loop function is always greater than -180 degrees.
Thus, the average magnitude slope of the plant is less than
40 dB/Decade, the loop function magnitude rolls off. The
phase bound of-180 deg implies that the system is
unconditionally stable in the absence of unmodeled phase
lags.

Physical limitations of the sensor provide
additionalroll off. At high frequencies, the wave length of
the structure approaches the length of the machinery mount
footprint. Above these frequencies, the force transducer can
no ranger be considered a point measurement device.
Instead, it acts as a distributed sensor, physically
averaging load which varies over its surface. The net effect
is that the transducer is incapable of passing on very high
frequency load measurements. This manifests itself in the
magnitude of the plant function (Fig. 10) as an abrupt roll-
off without phase lag.. Thus, the magnitude of the plant
function does not mcrease without bound. This
phenomenon suggests that the the size of the mount be
designed as part of the control problem, and suggests the
use of a distributed sensor.

2.5 Contml-Sm_an'e Interaction

2.5.1 Stability Robustness
Because of the bounded propertT, of the plant phase,

phase margin can independently describe the robustness of
the closed loop system. Here, phase margin is defined as
the difference between the most negative excursion in
phase of the loop transfer function and -180 o. The phase of
the !oop transfer function, G(s)C(s), is the sum of the phase
ot the compensator, C(s), and the phase of the plant
transfer function, G(s). Therefore, the phase margin of the
loop transfer function can be divided into the sum of two
parts; one contribution from plant dynamics and one
contribution from compensator dynamics. This is shown
graphically in Fig. 12. Here, PMis used to denote the
total phase margin, PMp to denote the phase margin
contribution from the plant transfer function, and PMc to
denote the contribution from the compensator.
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Figure 12
Phase of Compensator, Plant, and Loop Transfer

Functions



2.£2 Modal and Pole-Zero Ot_rlap
The phase margin due to the plant dynamics is a

function of two variables; modal overlap, M, and pole-zero
overlap, R. These quantify the similarity of high PMp
common to]plants that are heavily damped and those which
exhibit modes closely spaced in frequency. Modal overlap

is defined by _coo and pole-zero overlap is defined by r_c°-----Q°,
,_o} E

where _COois the real part of the roots of the structure, e is

zero-pole spacing, and hco is pole-pole spacing. The phase
margin determined by the contribution of only two poles
and two zeroes is listed in Eq. 12. PMp is calculated by

summing up the two angles, 01 and (}2 pictured in Fig. 13.
This expression is valid for plants with low modal overlap.
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Phase Margin Calculated from Plant Transfer Function

For plants with higher modal overlap, contributions
from more poles and zeroes are necessary for an accurate
prediction of PMp. The expression listed in Eq. 13, is valid
for any value of M or R.

rl,

.=o RM + I(I- 2-_)+ -_-(n+n 2) (13)

The number of terms, no, necessary to get an
accurate value ofthe Phase Margin _sa linearfunctionof
modal overlap. It is calculated from the expression

u

tan(p)-_. This method for calculatingno ignores all

terms due to poles and zeroes outside a region in the
Laplace plane describedby the pieceofpie whose borders

are the linesat p radians from the positivecomplex axis

and -pradiansfrom the negativecomplex axis.
Two important resultscan be gathered from Eq. 13.

High modal overlapimpliesa largephase margin. This is
a very interestingand usefulresultsinceplantswith high
modal densityare normally difficultto model accurately;
consequently, model-basedcontrol designs may provide
only minimal, if any, stability-robustnessmargins.
Another factorthat affectsphase margin is pole-zero
overlap, R. When R is large, the phase margin also
increases.The planttransferfunctionhas a much tighter
bound on phase excursionswhen the plant has high modal
or high pole-zero overlap. These two resultscan be
restated interms ofstability-robustness.IfeitherR or M
islarge,the controllercan be operatedwith high gain since
the controldesign isrobust with respectto unknown or
unrnodeledplantdynamics.

Root locusprovides a graphical _nsualization of how
overlap provides stabilityrobustness. Italso sets the
stage forconsideringthe choiceofcompensator damping.
Two systems are shown in Fig. 14: one with low overlap
(systemA),and one with higheroverlap(systemB _.In this
Comparison, overlap isincreased by (hysteretic)damping

only. Inboth systems,a high-frequencypoleisplacedatc_l
on the realaxis tomodel lagsdue toamplifiers.Near and

above COl,the lag decreases the locus branch departure
angles.

Ot

r

C

jco

coI -'2 o coI o

System A System B
Figure 14

Root Locus Comparison of Overlap

Because the difference in damping between the two
systems does not appreciably change the shape of the
locals, the approximate radius, r, the high frequency
branches take on their way to associated zeros is virtually
the same for both systems. Also, the gain required to move
the closed loop poles to a given position onthe locus is the
same for both systems. However, system A has poles

closer to the jco axis than system B. With enough modal
overlap, system B has infinite gain margin. A similar
graphical argument can be made if instead of increasing
the damping of system B, the poles of system B are more
closely spaced than in system A (assuming the poles of
systems A and B have equivalent real parts). The gain
required to cause instability would be greater for system B
than for system A. This is due to the added stability
robustness provided by the closer spaced poles.

2.5.3 Machine Mass and Stability Robustness
For a rigid machine, it is interesting to note how the

ratio of machine mass to modal mass effects overlap and
thus stability robustness [7]. If the mass of the machine is
insignificant as compared to the plant modal mass, pole-
zero frequency separation will approach zero. So, as
machine mass approaches zero, R approaches infinity and
the system gets very robust since the plant transfer
function exhibits pole-zero cancellation. In this case a
voltage applied to the piezo is incapable of exciting any
force because it has nothing to react against; the flexible
modes are uncontrollable.

On the other hand, as the mass of the machine
becomes much greater than the plant modal mass, plant
poles and zeros tend towards maximum separation. In the
extreme of infinite machine mass, the plant transfer
function becomes a measure of unloaded structural
resonances. As machine mass approaches infinity, R
approaches Rmin, the unloaded plant pole-zero overlap,
and robustness is minimized. In this case,plant poles
occur at unloaded driving point zeros, and plant-zeros occur
at unloaded structural resonances.

|



2.5.4 Effects of Sensor Choice on Stability
Robustness

Some interesting insights about choice of control
output can be ascertained from the previous section. If
position is chosen as the measured output, the alternating
pole-zero pattern of the plant transfer function is still a
result. Thepoles of the plant transfer function are the same
as for the force sensing case, but the zeroes of the plant
transfer function are different. The zeroes of the plant are
the zeroes of the conipliance functions. For the case when
the machine is rigid, the factor R is smaller when force
sensing is used. For at least this case, force sensing
should provide a larger stability margin than position
sensing. This supports the conclusion made above, that
force sensing appears to be the best choice.

2.6Compensator Parameters
Because no knowledge ofexact frequency locations

ofplant poles or zerosisassumed, plant interactionwith
the disturbancecannot be a factorin compensator tuning.
Logically,then,the naturalfrequency ofthe compensator
shouldbe tuned tothefrequencyofthe disturbance.

Compensator damping, _c,and gain,K, then are the
only parameters inquestion.At the disturbancefrequency,
higher gain implies better performance (Eq. 11).

Compensator gain at cocbeing,
K

CompGain [co, = 2{"'_ (14)

immediately suggests that for a given loop gain, K, best

performance is realized for _c as small as possible.
Stability, however, limits K. Let us assume zero damping
for the compensator pole. For a plant with light damping
as well, the departure angle of a loop function pole at co is
approximately:

= [complexcomplex0 d _zems -_poies ]180°-90°- _b

Below m c (15)

Where _ is the angle contribution from tmmodeled lags
If the compensator pole is above a plant pole, its

departure angle is 90-_ deg. If it's damping ratio is zero,
then, any finite gain sends it into the right half plane. If,
on the other hand, the compensator pole is below a plant

pole, its departure angle is -90-_ deg. In this case, the
plant pole causes instability and does so as a result of
some finite gain. In the limit as the plant becomes well

damped and plant phase approaches 90o-¢, the

compensator pole departure angle approaches -180o-¢,
and the system is always stable. This is the simplest
plant to control.

Recall that the compensator pole is tuned to some
pre-determined disturbance frequency. Thus, the location
of the compensator pole with respect to the plant poles is
unknown. For thisreason,maximum stableperformanceis
realizedwith the compensator damping set tothat ofthe
plant. In thiscase,the pole thatgoes unstable cannot be
distinguishedas eithercompensator orplant, resultingin
a kind ofperformance-stabilitycompromise.

2-7 _tion of Pedorman_
Performance ofa controllerdesigned forisolationis

definedas the attenuationachievableat the frequenciesof
the disturbance.Performance,likestability-robustness,is
dependent on both compensator dynamics and plant
dynamics.

The dependence on plantdynamics isapparent from
Eq. 7. Poten_al performance isgreatestifthe disturbance
frequency isclosetoa zeroofthe plant,and worst when it

is close to a pole of the plant. When damping is added to
the structure, the performance is enhanced at the poles and
degraded at the zeroes. Performance as a function of
compensator d_"aamics was described by Eq. 8: high gain
and low compensator damping ensures high performance.

3 Compensator Implementation
The desired input output relationship of this

classical circuit is:

V..._o= 1
V s2 2

i + 2_pcopS + cop (16)

3.1 Classical Implementation
This function was implemented in two ways. First,

it was written in control-canonical form and assembled on
a proto-board using operational amplifiers, capacitors, and
resistors. In this implementation, the compensator is
tuned to a predetermined disturbance frequency and is
thus useless for automatic tracking of a time-varying
disturbance.

3.2 Self Tuning Implementation
A second, more interesting design exhibited the

property of self tuning. This frequency following circuit
design [12, 13, 14, 15, 16] is unique in that its transfer
function is that of a second order pole whose imaginary
part is set by the frequency of a reference signalpair,

cos(cot) and sin(cot). Fig. 15 is a block diagram of this
analog algorithm.

cos(cot)

I

I
sin{cot)

Figure 15
Frequency Following Compensator

Here, the input on the leftismultipliedby sin(cot)

and cos(cot).Next, the signalsare low-pass filteredby a
oleats=-a. Ifa=0, the processbecomes a sineand cosine
ourier transform at a singlepoint in frequency space.

Next,the now virtuallyDC signalsare multipliedby a 2X2

rotation matrix, T(0). Eq. 17 shows this orthonormal

matrix in terms of 0,the angle by which T(0) rotatesthe
vector:.

Fcos(O) -sin(O) 1
T(0) = [sin (0) cos(0)J (17)

After the signals have been "rotated" in phase, they are
converted back into the time domain by re-multiplication
by sin(cot) and cos(cot) and summed, creating the output
signal.

A time domain analysis offers a more rigorous and
revealing description of this algorithm. The transfer
function is derived using the property that the transfer
function of any linear, time invariant system is the
Laplace transform of the impulse response [17] :
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Y(s) (s ÷ a)cos(8) -,-(o sin (8)

- 2 °12X(s) (s _- a) + (18)
which has poles and a zero at:

Poles at s=-a_+j_

Zero at s = - [a + o_tan(e)] (19)

The pole locations can also be expressed in terms of
damping ratio and natural frequency:

co n a%/_+ _2
= (20)

a

_c-co
n (21)

The ability of this compensator to track in frequency
presents an additional facet to discuss. Tracking is very
attractive in applications where the disturbance frequency
changes. Even motors designed to operate at some
nominal frequency will vary somewhat. Although major
transient changes in frequency are not likely to occur in
such motors, they can be expected in a variety of
applications.

Interestingly, this compensator exhibits
instantaneous response tochanges in referencefrequency.
This is seen in Eqs 22 and 23, the response toa step in
frequency appliedto both the input signaland reference
signal at t=T [17]• The response isseparated into the
steady stateand transientparts.

- 2 Cos(cot) - coSin(cot)1
Yss= _-Cos(cot)

+

a 2 + 4(o2 (22)

{]( i i J"x"°s(r° _#_7,1( 1 I x.. 1 -,{t-T), ,OI = CO,

where _ = co2(t - 2T)- _
(23)

No amplitude effects are seen because the input
function is restricted to be continuous. The normalized sum
of Eqs. 22 and 23 is plotted in Fig. 16. Here, frequency is
stepped from 1 Hz to 10 Hz, and a=.01 Hz.
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Figure 16
Normalized Response toStep inFrequency

Note that in application,the input signal comes
from a sensor, and is thus athe result of filteringa
disturbancethroughan unknown dynamic plant.The result
is that the input and reference signal are unlikely to
change together.Rather,the referencesignal,taken from a
shaR encoder,willlead the sensorsignal.

4 Experimental Resul_
Results of experimental measurements are

presented in this section. The report begins with a
descriptionofthe apparatus, followedby a reportof the
performance metric used. Next data collectedusing the
classicalcontrollerispresented and discussed. Finally,
results taken with the frequency follower as the
compensator are shown.

4.1 Apparatus

A cross-section of the apparatus is shown in Fig. t7.
Although not shown to scale, it represents the features of
the experiment. At the top is the shaker which is supported
by an aluminum bracket attached to an I-beam support
structure. The support structure is bolted to a cinder-block
wall. The shaker is connected to the load cell via threaded
rod. The load cell is fastened to the actuator assembly,
which is fastened to the flexible plate. This is bolted at the
corners to a 15 x 15 x 0.5 in. aluminum base plate. The
base plate is bolted to the same r-beam structure as the
shaker.

_. Shakar

__.... Threaded rod

A cc el e ro m a t ar,.,_A_,,...,-/

Load Cell .=._._._/_ m Actuator assembly

Strain Gauge

K-..-Ili:iilP Plate

_pJ..,h.t,_..J#tas,_.JJ_.#l,,_...J#_.pll

Accelerometer "Rigid" Base Nata

Figure 17
Apparatus

4.2Pefformamm Mematremmat

Before data can be collected,a performance metric
must be chosen• Because the goal of control in this
applicationis to rejectdisturbances,so that no forceis
transmitted tothe structureby a vibratingmachine, the
command signalin the block diagram ofFig. 11 iszero.
Comparison oftransmitted forcewith zero conveys little
information,so a transmissibilityfunctionmeasured under
open and closed loop conditions is used to determine
performance. Although the numerator ofthis transfer
function should obviously be transmitted force, the
denominator isnot quiteasobvious. Itcertainlyshouldbe
a measurement of applied disturbance,either force or
acceleration,so that the transfer function provides a
measure of the transmitted load resulting from an
applicationofa forceoracceleration.

The choiceofwhich metrictouse depends on whether
the disturbanceisbest modeled by a displacementor force
source. The classificationbetween disturbancesourcesis
summarized in terms of driving point impedance of the
structureatthe mounting location.Ifthe structuraldriving
point impedance is significantcompared to that of the
machine, (iethe effectivemodal mass ofthe structureis
significantcompared the mass ofthe machine, M) a force
sourceresultsin a model that resembles physicalreality.
Otherwise, a displacement sourceyieldsa more accurate
model. The assumption ofa non-trivialplantimpliesthat
the drivingpointimpedance ofthe structureissignificant
and a forcesource be used. However, under closedloop
conditions,an activemount has the effectofreducing this
impedance to the pointthat a displacement sourcewould
beideal.

The solutionchosen inthisstudy istomeasure both
ossibleperformance functions. Performance is
eterminedby measuring the transferfunctionsbetween 1)

lip-I



transmitted force and acceleration measured above the
mount, Pfa, and 2) transmitted force and applied force
(measured above the mount, Pff. These frequency response
functions are measured under open and closed loop
conditions, with a spectrally white signal sent to the
shaker. Finally a quantitative measurement of
performance is obtained by calculating the difference
between the open and closed loop magnitudes of the
respectivefunctzons.

One unavoidable draw back ofusing thesefunctions
isthat pole locationsare differentbetween Pfa,PiT,and
the plant transferfimction.Redeemingly, however, these
are idealfunctionsforperformance measurement.

4.3 Classical Compensator Results
The following data were taken with the compensator

natural frequency at 846 Hz and a damping ratio of 0.54%.
Here, the nearest plant pole is at 877 Hz. Typical open
and closed loop performance functions for this tuning are
plotted in Figs. 18 and 19.
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Figure 18

Typical Force Performance Function (COc< COp)

The closed loop data was collected with the loop
gain increased so that the closed loop system was on the
edge of instability. We can see from Fig. 12 that using Pff
as the performance metric, a maximum performance of 25
dB is achieved at the compensator natural frequency.
Using Pfa as a performance metric (Fig. 13), a maxzmum
performance of 22 dB is realized at the same frequency.
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Figure 19

Typical Acceleration Performance Function (co¢ < 0Op)

In both performance {'unctions,an increase in
relativetransmitted forceis seen above and below the

disturbance frequency. The closedloop transferfunction
has a zero at the disturbance frequency. The open loop
poles move away from this closed loop zero to the
neighboring open loop zeros,above and below the notch.
Thus the observed increasedforcetransmissionabove and
below the notch resultfrom the loop poles which move
toward open loop zeroswith increasinggain.

Maximum performance is plotted against
compensator damping ratioin Fig. 20. Note the trend
toward infiniteperformance for a compensator damping
ratioofzero. This isbecause loopgain atthe frequency of
interest tends toward infinity for zero compensator
damping. As compensator damping is increased,peak
performance drops. This decreaseisrapidforlow damping
because the rate at which the maximum gain ofa second
orderpole decreaseswith respecttodamping ratiois:

d(PeakGain) 1

d(_c) =- (24)

Because performance isproportional to gain, itbehaves
similarlysuch that as damping ratiois increased, the
decreaseinperformance becomes more gradual.

Compensator Pole: 846 Hz Plant Pole: 877 Hz
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Figure 20

Performance vs Damping Ratio(O_c< COp)

The gain at which instabilityoccurs is plottedin
Fig. 21. This plot has two distinctregions..For low
compensator damping, the adjacent plant pole causes
instability.As compensator damping isincreased,local
pole zerooverlapisalsoincreased.This isrealizedby the
plant poleas added gain margin and appears inFig.21 as
a greater gain required to cause instability. As the
compensator poleismoved furthertothe leR inthe s-plane,
itprovidesenough phase margin atthe neighboringplant
pole toprevent itsinstabilityand a new higher frequency
plant pole becomes responsibleforinstability.The curve
flattensbecause the incrementalincreaseinphase margin
issmalleratthishigherfrequencypole.
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Maximum Gain vs.Compensator Damping Ratio (a)c< O)p)

Performance vs compensator damping for the
compensator tuned to900 Hz, which is above the plant
pole, is shown-in Fig. 22. With the lightlydamped
compensator tuned above the plant pole,performance is
low. When itis closeto the jw axis,ittakes only very
slightloopgain topush the compensator poleintothe right
half plane. As compensator damping isincreased,more
gain is tolerated by the closed loop system. This is
realizedas increasingperformance in Fig.22. When the
damping is increased enough that a plant pole causes
instability,the curve takes on the characteristicof
decreasing performance with increasing damping ratio,
similarto the curve ofFig.t4.This transitiontakes place
at a compensator damping ratioof0.2%, which isalsothe
plant damping ratio. At this point, plant poles and
compensator poles are equally far from the jw axis and
requireapproximately the same amount ofgain to move
into the right half plane. As compensator damping is
increased, the plant pole becomes decisivelyresponsible
for instability.This supports the stability-performance
conclusionofsection2.6that compensator damping should
be settothat ofthe plant.
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Figure 22

Performance vsDamping Ratio (COc> O_p)
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4.4 Frequency Following Compensator Results
The self tuning compensator was tested for tracking

performance. The real part of the conjugate poles, a, of the
compensator was kept constant at 9 Hz. Recall that the
imaginary part of these poles is set by the frequency of a
reference signal. A sinusoid with varyingfrequency was
used as the disturbance and reference for the compensator.
Frequency was increased from 800 to 1000 l-Iz at a rate of
about 250 Hz/sec.

Open and closed loop time measurements of
transmitted load are shown in Figs. 23 and 24. At t=0.8
sec., where the disturbance frequency is about 877 Hz, the
plant resonance at 877 Hz is clearly visible in the open
loop time response. The absence of this resonance in the
closed loop response indicates good performance.
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Figure 23
Open Loop Load Measurement
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Figure 24
Closed Loop Load Measurement

The performance functions in Figs.25 and 26 were
obtained by computing Pff and Pfa using the ramped-
frequencysignalas a disturbance.
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Figure 25
Open and Closed Loop Pff for Ramped Frequency
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Figure 26
Open and Closed Loop Pfa for Ramped Frequency

8 Colons
The intent of this research was to consider active

control possibilities for isolating two flexible structures
from one another when the model of one or both of the
structures is known with too little fidelity to permit model-
based control design. The basic problem is to perform
robustly stable, active narrow band isolation of a noisy
machine from a flexible structure. The research resulted in
a number of results applicable to different facets of
structural control and vibration isolation.

Typically structural control design is done using
sensor-actuator pairs that are dual and collocated. This is
due to the phase bounds guaranteed for the plant transfer
function. We proposed using a collocated sensor-actuator
pair that is not dual. It was proven that the same phase
bounds, characteristic of dual-collocated sensing and
actuating, exist for the nondual pair proposed in Section 2.
The resulting plant takes the form of two zeros at the
origin of the s-plane, with an alternating pole-zero pattern
which bounds the phase between 0 and 180 o. This
characteristic is guaranteed for any generic structure and
machine.

Two different narrow-band compensation schemes,
exploiting knowledge of the disturbance spectrum were.
proposed. The analysis was done assuming a very limited
knowledge of plant dynamics. ,It was shown both
theoretically and experimentally that controller
performance is optimal when structure has high modal
overlap -- optimal in the sense that good performance can
be achieved and the controller is robust to sensor and
actuator lags.

Some conclusionsthatcan be extrapolatedfrom this
resultregarding high modal overlap. Itcan be inferred
that a structure need not have high modal overlap
everywhere forguaranteed highperformance.The structure
needs high modal overlap only in the bandwidth of the
compensator since the compensator is designed to have
negligible dynamic effectat other frequencies. This
property could be useful in choosing robust operating
frequenciesofthe mounted machine. The obvious choice
would be to operate in a regionwhere modal overlap is
high. This isa novel approach since typicallyregionsof
high modal overlap are avoided for state-spacecontrol
design since they are difficultto model. The authors
believe that these properties are applicable to more
complicated systems. High modal overlap help the
stability-robustnessproperties of broadband control
schemes and other narrow band controlschemes since it
forCeSstricterbounds on the phase excursionsofthe plant
transferfunction.
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